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ABSTRACT: In this paper we introduced the new results for a generalised weak contractive mapping in
modular metric space using integral type.

I. INTRODUCTION AND PRELIMINARIES

Weak contraction in Hilbert space is firstly introduced by Alber and Guerre- Delabriere in 1997, and then later it
can be proved by Rhoades on the basis of complete metric spaces. It defines that If (X, d) is a metric space and
T is a mapping from X to X then T is said to be weakly contractive, If( ), ( ) ≤ ( , ) − ( , ) …(1)
When ∶ [0, ∞) → [0, ∞) is a non decreasing continuous function such that ( ) = 0= 0 Also the concept is re-generalized by the author’s Dutta and Chaudhary for the generalization of
contraction in metric space.
The author Nakano first introduced the conceptual theory of modular metric space and further generalization can
be done by Musielak and Orlicz. Now the theory Modular metric space is mostly used the study of orlicz spaces
whose applications to integral operators, approximations and fixed point theory.
Definition1.1. Let X be an arbitrary vector space over = .
A) A functional : → [0, ∞] is called modular if:(i) ( ) = 0 = 0.
(ii) ( ) = ( ) ∈ | | = 1, ∈ .
(iii) ( + ) ≤ ( ) + ( ) , ≥ 0, + = 1, , ∈
If  (iii) is replaced by
(iv) ( + ) ≤ ( ) + ( ) , ≥ 0, + = 1, , ∈
Then the modular ρ is called convex modular.
B)  A modular ρ defines a corresponding modular space; i.e. the spaceXρ given by:= ∈ ; ( ) → 0 → 0 …(2)

Definition1.2. Let be a modular space.
a) A sequence ( ) ∈ in is said to be:

i) -convergent to If ( − ) → 0 → ∞.
ii) -Cauchy if ( − ) → 0 → ∞.
b) is -Complete  if every -Cauchy  sequence is -convergent.) A subset B ⊂ is said to be -closed if for any sequence ( ) ∈ ⊂ → we have B
d) A subset B ⊂ is said to be -bounded if ( ) = sup ( − ) < ∞
for all , ∈ , where ( ) is the -diameter of B.
e) has a Fatou property if( − ) ≤ lim inf ( − ).
Whenever → and → → ∞.
f) is said to satisfy the ∆ –condition if (2 ) → 0, ( ) → 0→ ∞. …(3)
Definition 1.3. Let X be a nonempty set and F: X → X. A point ∈ is a fixed point of F iff = .

International Journal of Theoretical & Applied Sciences 6(1): 60-66(2014)

ISSN No. (Print) : 0975-1718

ISSN No.
(Online) : 2249-3247



Pathak, Bhardwaj and Garg 61

Definition 1.4. Let Q be a subset of real number . A mapping F : → is called monotone increasing (or
monotone non-decreasing) ≤ iff ( ) ≤ ( ), for all and are elements in Q. A mapping F: → is
called monotone decreasing (or monotone non-increasing), ≥ Iff ( ) ≥ ( )for all and are elements
in Q.

II. MAIN SECTION

2. A Fixed point Theorem of Integral Type for a generalized weak contractionin modular spaces
Proposition 2.1. Let bea modular space on X, If , ∈ with ≥ , then ( ) ≤ ( )
Proof: In case = , we are done, suppose > , and then one has < 1 and then ( ) == + 1 − (0) …(4)≤ ( ) + (0)= ( )
Proposition 2.2. Let be a modular space in satisfy the ∆ -condition and Let { } n∈ be a sequence in .
If ( ( − )) → 0 as n→ ∞, then ( ( − )) → 0as n→ ∞, where c, l, a ∈ >+ = 1.

Proof: Since ( ( − )) → 0 as n→ ∞, then by ∆ -condition we get(2 . ( − )) → 0as n→ ∞ …(5)
Now from proposition for m ∈ using Sandwich theorem, we have(2 ( − )) → 0as n→ ∞, …(6)

for n∈ we have + = 1, we get = ( − 1) ≥
Then there exist ∈ such that

2 ( − 1) ≤ ( − 1) ≤ 2 ( ) …(7)
By Proposition we get(2( − 1) ( − )) ≤ ( − 1) ( − ) …(8)≤ (2( ) ( − ))
From (6) and (8), we obtain= lim→∞

( ( − )) = lim→∞
(( − 1) ( − )) = 0 …(9)

Theorem 2.3. Let be a -complete modular space, where satisfy the ∆ -condition and Let c, l, ∈> ∶ → be a mapping satisfying the inequality∫ ( ) ≤ ∫ ( )ψ ρ ( ) ρ ( )ψ ρ
…(10)

For all x, y∈ , where ψ, ϕ ∶ [0,1) → [0,1) are both continuous and monotonic non decreasing function with
ψ(u) = ϕ(u) = 0 Iff = 0, ∶ → is a Lebesgue  integrable mapping is summable on each compact

subset of [0,1), nonnegative and ∫ ( ) = 0, ∀ > 0∈
. Then R is a unique fixed point

Proof: Let the sequence be { }n∈ ∈ = , = 1, 2, 3, ___
We firstly proves the sequence ρ c(R − R ) → 0perhaps( ) ≤ ( )ψ ρ ( ) ρ ( )ψ ρ ( )

≤ ∫ ( ) … .ψ ρ ( )
(11)

By monotonic non decreasing function of ψ and proposition, we have( ) ≤ ( )ρ ( )ρ ( )
≤ ∫ ( )ρ ( ) …(12)

Therefore the sequence ρ c( − ) is monotone decreasing and bounded below, Hence there exists≥ 0 such that lim →∞ ( ( − )) = …(13)
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If > 0, → ∞ in the inequality (11), we get
ψ(s) ≤ ψ(s) − ϕ(s)< (s) …(14)

Which is a contraction, thus = 0 we havelim →∞ ( ( − )) → 0 …(15)
Next, Now we prove the sequence { }n∈ is -cauchy. Suppose that { }n∈ is not

-cauchy, then ∃ > 0 and subsequence and > ≥ such that( − ) ≥( − ) < …(16)

Now, let ∈ such that + = 1, then we get

( ) ≤ ( )ψ ρ ρψ ρ

≤ ∫ ( )ψ ρ …(17)( ) ≤ ( )ψ ρψ ρ

Which implies thatρ c − ≤ ρ l − …(18)

we have ( )ρ = ( )ρ

= ∫ ( )ρ
…(19)

≤ ( )ρ

< ( )
From (16), (18) and (19), we get≤ ρ c −≤ ρ l − < + − …(20)

From (15) and proposition [2.2] we havelim →∞ − = 0 …(21)

From (20) and (21) we obtain − = lim →∞ − = …(22)lim→∞
( )ρ =

Letting → ∞ in (17), by prop of ψ and Eq. (22) we get
ψ( ) ≤ ψ( ) − ψ( ) < ( ) …(23)

which is contradiction. Therefore { }n∈ is -cauchy. Since is -complete there exist a point t ∈ such
that lim →∞ ( − ) → 0, Next we prove that t is a unique fixed point of T.
putting = = (10), we obtain∫ ( ) ≤ ∫ ( )ψ ρ ρψ ρ

…(24)
Now at → ∞, in the inequality we have

ψ ρ c( − ) ≤ ψ(0) − (0) = 0 …(25)

ρ c( − ) = 0 = , Suppose that there exist ∈ such that = ≠ therefore we have
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( ) ≤ ( )ψ ρ ( )ψ ρ ( )
≤ ∫ ( )ψ ρ ( ) ρ ( ) …(26)≤ ( )ψ ρ ( )

≤ ( )ψ ρ ( )
Which is a contraction. Hence = . Therefore R is a unique fixed point.

Corollary 2.4: Let be a -Complete modular space where satisfy the ∆ -condition and Let c, l, ∈> ∶ → be a mapping satisfying the inequality∫ ( ) ≤ ∫ ( )ρ ( ) ρ ( )ρ
…(27)

For all x, y ∈ , where ϕ ∶ [0,1) → [0,1) are both continuous and monotonic non decreasing function withϕ(u) = 0 Iff = 0, ∶ → is a Lebesgue  integrable mapping is summable on each compact subset of

[0,1), nonnegative and ∫ ( ) = 0, ∀ > 0∈
. Then R has a unique fixed point.

Proof: Take ψ(u ) = u we obtain this corollary.
Theorem 2.5: Let be a -Complete modular space where satisfy the ∆ -condition and Let c, l, ∈> ∶ → be a mapping satisfying the inequality∫ ( ) ≤ ∫ ( )ψ( ( , )) ( , )ψ ρ …(28)
For all x, y ∈ , where( , ) = ( − ), ( − ), ( − ),( − ) + ( − ) …(29)

and ψ, ϕ ∶ [0, ∞) → [0, ∞) are both continuous and monotonic non decreasing function with ϕ(u) = ( ) =0 Iff = 0, Then ∶ → is a Lebesgue integrable mapping is summable on each compact subset

of[0, ∞)nonnegative and ∫ ( ) = 0, ∀ > 0∈
. Then R has a unique fixed point.

Proof: Firstly we prove that the sequence ψ c( − ) → 0, since∫ ( ) ≤ψ ρ ∫ ( )ψ …(30)≤ ( )ψ

Monotone non-decreasing of ψ we have
ρ( − ) ≤ ( − ) …(31)
By definition of m(x, y), we get

∫ ( )ψ = ∫ ( )ψ
, ,

…(32)

= ( )ψ
, ,

= ( )ψ ,
If ( − ) > ( − ) ≥ 0, then( − ) = ( − )( ) ≤ ( )ψψ

≤ ∫ ( )ψ …(33)



Pathak, Bhardwaj and Garg 64

< ( )ψ ρ

Which is a contradiction, and hence
ρ( − ) ≤ m( − )= ρ( − ) …(34)

So, that the sequence {ρ( − )} is monotone decreasing and bounded below. Hence there exists ≥0 such thatlim →∞ ρ( − ) = …(35)
If > 0, at → ∞ the inequality (30), we get
ψ(k) ≤ ψ(k) − ( ) < (k) …(36)
Which is a contradiction, and thus = 0, so we havelim →∞ ρ( − ) = 0 …(37)
Next we prove that the sequence { ( )} ∈ is not a -cauchy and there exist > 0 and sequence{ } >{ } ≥ such that
ρ( − ) ≥ , ρ 2( − ) < …(38)
Since,∫ ( ) ≤ ∫ ( )ψ , ,ψ ( )

(39)≤ ( )ψ ,
Which implies that ( − ) ≤ ( , ) …(40)

Also, ( , ) = ( , ), ( , ), ( , ),( , ) + ( , ) …(41)( , ) = ( − + − )≤ (2 − )) + (2( − )< + (2( − ))
For the last term in ( , ), by proposition (2.1), we have ( )ψ

= ( )ψ ( )
≤ ∫ ( )ψ ( ) …(42)≤ ( )ψ ( )

< + ( )ψ ( )
It follows from (41) and (42) we have( , ) = ( − ), ( − ), ( − ),( − ) + ( − ) …(43)

< + 2( − ) , ( − ), ( − ), ,[ ( − ) + ( − )] 12
By (37), (38), (40) and (43) and the ∇ - condition of , we havelim →∞( − ) = lim →∞ ( − ) = …(44)
Taking → ∞ in (39) by (44) and the continuity of ψ, we get

ψ( ) ≤ ψ( ) − ( ) < ( ) …(45)
which is a contraction. Hence the sequence { ( )} ∈ is a -cauchy. Since is a -Complete and there exist
a point ∈ such that ( − ) → 0 → ∞.
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Next we have to prove that is a unique fixed point of R, for this, Let us assume that≠ , ( − ) > 0.∫ ( ) ≤ ∫ ( )ψ , ,ψ ( )
(46)m( , ) = ( − ), ( − ), ( − ),( , ) + ( − ) …(47)

= 0, 0 , ( − ), ( − )2= ( − ) → ∞.
Now as → ∞ in (46) by using (47) we get( ) ≤ ( )ψ( ( )) ( ( ))ψ ( )

< ∫ ( )ψ( ( )) …(48)
Which is a contradiction. Hence ( − ) = 0 = , If there exist point ∈ such that =≠ , then using an argument, we get( ) = ( )ψ ( )ψ ( )

≤ ( )ψ( ( , )) ( ( , ))
≤ ∫ ( ) …ψ( ( )) ( ( ))

(49)< ( )ψ( ( ))
Which is a contradiction, Hence = .

Corollary: 2.6. Let be a -Complete modular space where satisfy the ∆ -condition and Let ∶ →
be a mapping satisfying the inequality∫ ( ) ≤ ∫ ( )ψ( ( , )) ( , )ψ ρ …(50)
For all x, y ∈ , where( , ) = ( − ), ( − ), ( − ),( − ) + ( − ) …(29)

and ψ ∶ [0, ∞) → [0, ∞) is continuous and monotonic non decreasing function with ( ) = 0 Iff = 0, Then∶ → is a Lebesgueintegrable mapping is summable on each compact subset of[0, ∞) nonnegative and∫ ( ) = 0, ∀ > 0∈
. ψ

Proof: Taking ψ(u) = u, we obtain the corollary.
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